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that of N=4 SYM theory, has been recently established by computation in [1]. All n-point

4-loop amplitudes with n > 5 are finite on dimensional grounds. However, the situation

with the 5-point amplitudes remained unclear. In this paper we will show that the 5-point

4-loop amplitude must be finite due to N=8 supersymmetry, despite the fact that R5 has a

supersymmetric generalization for N=1, N=2 and N=4 SUSY. This means that all 4-loop

amplitudes in N= 8 supergravity are UV finite. We also discuss the current expectations

for higher loops.
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1 Introduction

Recent tour de force computations [1] of the 4-loop 4-point amplitude in N=8 d=4 super-

gravity [2] points out towards the possibility of the all-loop UV finiteness of the theory.

The purpose of this note is to clarify the supersymmetry predictions for the 4-loop N=8

d=4 supergravity (SG) and comment on higher loop predictions.

The linearized 3-loop counterterm was constructed in [3, 4] and for a while it was

considered as a candidate for a 3-loop logarithmic divergence. However, the computations

in [5] have shown that the corresponding divergence is absent, in agreement with their

earlier unitarity cut method expectations. Moreover, not only the term log ΛR4, but also
∂2R4

Λ2 and ∂4R4

Λ4 in d=4 were shown to cancel at the 3-loop level. This “superfiniteness”

property still does not have a clear explanation, but it indicates that the formula for the

critical dimension were the UV divergences start,

Dc = 4 +
6

L
, (1.1)

may be valid in N=8 SG. At the 3-loop level in N=8 SG only the term

κ4

∫
d4x

√−g R4 + . . . ∼ κ4

∫
d4x

√−g (RαβγδRα̇β̇γ̇δ̇
)2 + . . . (1.2)

could be associated with the logarithmic divergence in graviton amplitudes. Higher powers

of curvature, which may have defined an independent higher-point amplitude divergence,

are ruled out by dimensional considerations. Therefore, the computation of the 4-point

amplitude in [5] was sufficient to establish the finiteness of all n-point amplitudes at the

3-loop level: The same counterterm responsible for the 4-point divergence (or its absence)

is also responsible for the higher point divergence as it is simply a non-linear completion of

the 4-point counterterm. Since the 4-point divergence is absent, all higher point amplitudes

at 3 loops are also finite.

The situation with the 4-loop divergences requires a more detailed discussion. Even

prior to the computation of ref. [1] it was clear that there should not be any logarithmic

divergences of the 4-loop 4-point amplitude. However, the authors found much more. They

found that the superfiniteness in the 4-point amplitude takes place even at the 4-loop level.
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Thus the mysteries continued to accumulate, which gives an additional encouragement to-

wards further investigation of the possible all-loop UV finiteness of N=8 d=4 supergravity.

On the other hand, there are no calculations so far of the possible divergences of the

5-point amplitudes N=8 d=4 supergravity, without which one cannot be sure of the full

4-loop finiteness of N=8 d=4 supergravity. More exactly, the higher point counterterms

at 4-loop order κ6
∫

d4x
√−g Rn for n > 5 have positive dimension 2(n − 5) and do not

support logarithmic divergences. The only remaining point to check is the 5-point graviton

amplitude.1 One may wonder whether the relevant counterterm κ6
∫

d4x
√−g R5 + . . .,

which is not a non-linear completion of the 4-point counterterm, is available or forbidden by

supersymmetry. We will start here with a review of the known facts on this in the literature.

The recent analysis of supersymmetric counterterms in [6] is based on the harmonic su-

perspace construction in [7] (DHHK). It suggests that no UV divergences are to be expected

at the 4-loop order. This includes the 4-point amplitudes as well as all other higher point

amplitudes. Since it is not known whether the list of counterterms in harmonic superspace

studied by DHHK in [7] includes all possible candidates for N=8 supersymmetric coun-

terterms,2 one would like to have an independent information on existence/non-existence

of N=8 supersymmetrization of the R5 term.

The computation of the 5-point 1-loop type II string amplitude was performed in [8]

where it was shown that the R5 term is absent. This, by itself, may not be sufficient to

prove that the N=8 SG in four dimensions will not have a 5-point 4-loop UV divergence,

however, it makes it rather plausible. Moreover, the tree level computation of the 5-

point graviton string amplitude was also performed [9] and it was shown that various

contributions to the R5 cancel. This tree level answer for the string amplitudes does not

suffer from the problem of extra states of string theory versus N=8 SG [10], which may

affect the 1-loop computations of [8]. The fact of cancellation of the tree level R5 term in

string theory [9] is therefore, again, suggesting that N=8 SG at the 4-loop level will not

have a 5-point amplitude divergence. Still, the R5 term could have been allowed by SUSY

and just happen to have the coefficient zero at the tree and 1-loop level in string theory.

In view of all this indications that, most likely, R5 does not have an N=8 generaliza-

tion, a direct N=8 supersymmetry analysis is still desirable. If the R5 is disallowed by

supersymmetry, this means that the 5-point 4-loop amplitude is free of divergences due to

N=8 supersymmetric Ward identities. This is an unambigous prediction for computations

which respect N=8 supersymmetry. If supersymmetry forbids the R5 terms, this makes

the actual computation not necessary.

In this paper we will show that in N=1, N=2 and N=4 SG theories one can construct

linearized supersymmetric 5-point counterterms starting with R5. It will be important

therefore to study carefully what exactly is the situation in N=8. For this purpose we will

evaluate the existence of all possible supersymmetric invariants following the procedure

developed in the past in [3, 4] for the 4-point case. We will present the suspects and rule

them out case by case.

1This issue was raised by A. Tseytlin. We are grateful to L. Dixon and Z. Bern who informed us about it.
2In what follows we will compare, with the help of P. Howe, our candidates with those studied by DHHK.
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We will end this note by a short discussion of the possible directions of research of the

UV properties of N=8 SG.

2 Analysis of d=4 4-loop supersymmetric candidate counterterms

In the 4-loop order no supersymmetric counterterm of the symbolic form

κ6
∫

d4x
√−g R4∂2 + . . . is available in d=4, therefore the absence of a logarithmic

divergence in the 4-point amplitude is not surprising.

As a warm up consider the supersymmetrization of the 3-point 2-loop κ2
∫

d4xR3 and 5-

point 4-loop graviton coupling κ6
∫

d4xR5 in N=1 supergravity. We can use on shell a chiral

conformal superfield Wαβγ of dimension 3/2 and its spinorial derivative D(δWαβγ) = Rαβγδ .

For the 3-point amplitude at 2 loops in d=4 we may try

S3 ∼ κ2

∫
d4x d2θ Wαβγ W γξη Wξη

α . (2.1)

It is supersymmetric but has a wrong dimension, so we need an extra spinorial deriva-

tive insertion

S3 ∼ κ2

∫
d4x d2θ Wαβγ W γξη DαW β

ξη . (2.2)

This term is not supersymmetric since the insertion of a spinorial derivative makes the

superfield DαW β
ξη non-chiral. This is a useful way to confirm the well known fact that

R3 does not have a supersymmetric partner even in N=1 SG. The 5-point amplitude at 4

loops, however, has an N=1 supersymmetric version, namely

SN=1
5 ∼ κ6

∫
d4x d2θd2θ̄ Wαβγ W γξη DαW β

ξηW α̇β̇γ̇
W

α̇β̇γ̇
+ h.c. (2.3)

It corresponds to the following combination of the curvature spinors

κ6

∫
d4xRαβγδ Rγδξη Rξη

αβRα̇β̇γ̇δ̇R
α̇β̇γ̇δ̇

+ h.c. (2.4)

In N=2 supergravity the linearized superfield of dimension 1 is Wαβ, which starts with

the vector field strength spinor Fαβ . The 5-point supersymmetric generalization of the R5

term (2.4) is

SN=2
5 ∼ κ6

∫
d4x d4θd4θ̄ Wαβ DβW γδ DγW δ

αW
α̇β̇

W
α̇β̇

+ h.c. (2.5)

At the level of N=4 supergravity there is a dimension zero chiral superfield W and the

generalization of the R5 term (2.4) is

SN=4
5 ∼ κ6

∫
d4x d8θd8θ̄ ǫijkl D

i
αD

j
βW DαkW DβlW W W + h.c. (2.6)

What is available in N=8 case? The full superspace integrals κ6
∫

d4xd32θL(W,D, ∂)

depending on the linearized dimensionless superfield Wijkl and its spinorial and space-time

derivatives have positive mass dimension > 6 and will not supply the relevant supersym-

metric invariant. We will study here the actions over the subspaces of the 32 θ’s.

– 3 –
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Thus we would like to look carefully for the counterterms, candidate for the 4-loop

5-point amplitudes, which are not related to a non-linear completion of the 4-point coun-

terterms, and make sure that all possibilities are taken into account. We will use here the

same method [3, 4] which in the past allowed us not to miss the 3-loop 4-point candidate

counterterm. Now we will apply this method to the 4-loop 5-point case.

We are looking for the linearized supersymmetric version of κ6
∫

d4x
√−g R5 + . . ..

The linearized superfield of N=8 supergravity is Wijkl = 1
4!ǫijklmnprW

mnpr
. We will use

here, for simplicity, the setting of ref. [3] where the linear superfield W1234 depends only

on 16 θ’s

W ≡ W1234 = W
5678 ≡ W (x′, θB) , θB = (θ1, θ2, θ3, θ4; θ̄

5, θ̄6, θ̄7, θ̄8) (2.7)

in a special basis defined in [3], x′
αα̇ = xαα̇ + i

∑4
1 θiσαα̇θ̄i − i

∑8
5 θ̄jσαα̇θj . The 3-loop

4-point candidate counterterm is

SL=3 = κ4

∫
d4xd16θBW 4 ∼ κ4

∫
d4x

√−g (RαβγδRα̇β̇γ̇δ̇
)2 + . . . (2.8)

Since W 4
1234 depends only on 16 θB, this expression is supersymmetric. Each superfield

has a graviton spinor Rαβγδ (or Rα̇β̇γ̇δ̇) with 4 θ’s (or 4 θ̄’s). Therefore one of the terms, a

4-graviton part, is invariant under SU(8), so the supersymmetric partners are also SU(8)

invariant. A manifestly SU(8) form of this 3-loop counterterm was constructed in [4] using

the representations theory of SU(8) and the Yang tableaux.

Now we would like to increase the power of κ by 2 to describe the 4-loop counterterm.

SL=4
4 = κ6

∫
d4xd16θBW 4∂2 . (2.9)

Here W 4∂2 is a symbolic expression which means that two space time derivatives are

inserted between 4 superfields W 4. In fact, the action is symmetric in 4 superfields, in the

Fourier space we would have

SL=4
4 ∼ δ4(p1 + p2 + p3 + p4)W (p1)W (p2)W (p3)W (p4)(s + t + u) . (2.10)

Since in the 4-point amplitude s+ t+u = 0, there is no 4-loop counterterm supporting the

logarithmic divergence. This explains why the 4-point amplitude at 4-loop order is finite

by supersymmetry.

For the 5-point amplitude we will first identify the supersymmetric invariants and

afterwards check their SU(8) invariance. The first indication of the SU(8) invariance will

be the presence of the 5-graviton term (2.4).

On dimensional grounds with SL=4
5 = κ6

∫
d4xd2mθL(W,D, ∂) we see that m = 10 −

dimL where dimL ≥ 0. This means that we have to check the case of 16, 18 and 20 θ-

integration with L(W,D, ∂) depending on the linearized dimensionless superfield Wijkl and

its spinorial and space-time derivatives. There is no way to have less than 16 θ-integration

since each Wijkl depends at least on 16 θ’s.

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
6

The first attempt is3

SL=4
5 = κ6

∫
d4xd16θBW 5∂2 , (2.11)

where ∂2 means that two space-time derivatives are inserted between 5 superfields in an

arbitrary way. It looks supersymmetric, since the integrand depends only on 16 θB . How-

ever, the gravity part of W has 4 θ or 4 θ̄, so this expression does not have the 5-graviton

part which would be neutral in SU(8). It has, for example, a square of the Bel-Robinson

tensor times a scalar field with specific choice of SU(8) indices, in our case φ1234, which

clearly violates SU(8).

Second attempt4 is to replace ∂2 by 4 fermionic derivatives Dα, which hit some of the

superfields, or to replace one ∂ by 2 fermionic derivatives. This has the correct dimension

and may have a 5-graviton term, for example:

SL=4
5 = κ6

∫
d4xd16θBW 5D4

θ . (2.12)

However, when we hit the superfield W = W1234 by a spinorial derivative, say D4
α,

it becomes a linearized superfield with the first component equal to a spinorial field, a

56 of SU(8), namely χα123. Consider the properties of this superfield χijk β, which under

supersymmetry transforms into the vector field strength Fαβ ij and into the derivative of

the scalar Pα̇β[ijkl]

Dk
αχijk β = Fαβ ij , Dα̇lχijk β = Pα̇β[ijkl] . (2.13)

This means that the spinorial superfield χ123 β still depends on (θ1, θ2, θ3; θ̄
4, θ̄5, θ̄6, θ̄7, θ̄8).

However, it does not depend on θ4 anymore, instead it depends on θ̄4. The remaining

scalar superfields W1234, which are not hit by the spinorial derivatives (as we have only

4), still depend on the original combination of θ’s, but each of the χ fields has some of

the Grassmann variables switched partially to the new ones. The integral in eq. (2.12) is

therefore not supersymmetric.

The next case is

SL=4
5 = κ6

∫
d4xd16θBd2θ̄4W 3

1234χα123χ
α
123 + h.c. (2.14)

This expression looks supersymmetric since the Lagrangian depends on all 18 fermionic

directions. However, it is possible to perform the integration over d2θ̄4 since W 3
1234 does

not depend on these fermionic directions. Each of these derivatives will hit only one of the

spinorial superfields and produce ∂
αβ̇

W1234. The expression becomes equivalent to the one

in eq. (2.11) and is, therefore, ruled out.

In case of 20 fermionic integrations, dimension does not permit any spinorial derivative

insertions and the W 5
1234 terms depends only on 16 θ’s, the integral vanishes, there is no

counterterm. We may also try to have a Lagrangian depending on W 3
1234 and two other

3Such term was considered in DHHK in [7] and ruled out, P. Howe, private communication.
4 This term contains both the W and χ fields which obey different constraints. It has not been studied

in an explicit DHHK analysis in [7], but can be shown to be not supersymmetric, in agreement with our

argument below, P. Howe, private communication.
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superfields depending on some of θB as well as 4 other θ’s. For example W1235 depend on

θ1, θ2, θ3, θ5; θ̄
4, θ̄6, θ̄7, θ̄8

SL=4
5 = κ6

∫
d4xd16θBd2θ̄4d2θ5W

3
1234W

2
1235 . (2.15)

This looks supersymmetric, but the 5-graviton term is not there as one can check looking

at each superfield θ4 and θ̄4 terms.5 There are no other sub-superspace integrals depend-

ing on any combination of the superfields of the theory with any insertion of superspace

derivatives, which in principle may serve as 5-point 4-loop counterterms.

Thus we conclude that all possibilities to construct the 5-point 4-loop candidate coun-

terterm failed, the amplitude must be finite for the reason of supersymmetry and dimension.

3 Discussion

In this paper we have directly established that there is no N=8 supersymmetric gen-

eralization on the κ6
∫

d4x (R....)
5 counterterm. This is in complete agreement with other

indications of the same fact, coming from [6]–[9]. As the result, there is no need to compute

the 5-point 4-loop amplitude in N=8 SG.

What is in the future for N=8 SG now that 4-loop amplitudes are established to be

finite and even superfinite according to eq. (1.1)? It was pointed out in [11, 12] that the

UV properties of N=8 SG may be studied in the light-cone unconstrained superspace [13]

which admits a set of Feynman rules with one scalar superfield. Only physical degrees of

freedom are propagating in this unitary gauge where all local symmetries are fixed. The

counterterms for generic L-loop divergences have not been constructed yet in the light-

cone formalism. They are known to exist [3, 14] starting from 8-loop order in terms of the

Lorentz covariant on-shell geometric superfields. However, they may or may not lead to UV

divergences. We have seen repeatedly in computations in [5] and [1] that the unexplained

cancellations may take place.

The analysis performed in [12] shows that the relevant linearized counterterms are non-

local in the light-cone formalism, which may explain the finiteness of d=4 theory before

L=7. When E7(7) symmetry is added to the light-cone analysis, it may lead to the proof

of an all loop finiteness of perturbative N=8 SG. We have shown in [12] that a better

understanding of the structure of the Feynman graphs of the light-cone N=8 SG may be

useful and may lead to conclusive statements on the puzzling UV properties of the theory.

Other proposals suggesting a possibility of UV finiteness of N=8 SG [10, 15–17] will likely

be clarified and developed in view of the recent impressive computations in [1]. Hopefully

the UV status of perturbative N=8 SG will be established.
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